The nanomechanics of polycystin-1 extracellular region.

نویسندگان

  • Feng Qian
  • Wen Wei
  • Gregory Germino
  • Andres Oberhauser
چکیده

Recent evidence suggests that polycystin-1 (PC1) acts as a mechanosensor, receiving signals from the primary cilia, neighboring cells, and extracellular matrix and transduces them into cellular responses that regulate proliferation, adhesion, and differentiation that are essential for the control of renal tubules and kidney morphogenesis. PC1 has an unusually long extracellular region ( approximately 3000 amino acids) with a multimodular structure. Proteins with a similar architecture have structural and mechanical roles. Based on the structural similarities between PC1 and other modular proteins that have elastic properties we hypothesized that PC1 functions mechanically by providing a flexible and elastic linkage between cells. Here we directly tested this hypothesis by analyzing the mechanical properties of the entire PC1 extracellular region by using single molecule force spectroscopy. We show that the PC1 extracellular region is highly extensible and that this extensibility is mainly caused by the unfolding of its Ig-like domains. Stretching the native PC1 extracellular region results in a sawtooth pattern with equally spaced force peaks that have a wide range of unfolding forces (50-200 pN). By combining single-molecule force spectroscopy and protein engineering techniques, we demonstrate that the sawtooth pattern in native PC1 extracellular region corresponds to the sequential unfolding of individual Ig-like domains. We found that Ig-like domains refold after mechanical unfolding. Hence, the PC1 extracellular region displays a dynamic extensibility whereby the resting length might be regulated through unfolding/refolding of its Ig-like domains. These force-driven reactions may be important for cell elasticity and the regulation of cell signaling events mediated by PC1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins: possible role in cell proliferation.

Polycystin-1, the product of the PKD1 gene, is a membrane-bound multidomain protein with a unique structure and a molecular weight of approximately 460 kD. The purpose of this study is to investigate the binding of the cystein-flanked leucine-rich repeats (LRR) of polycystin-1 to extracellular matrix (ECM) components. These interactions may play a role in normal renal development as well as the...

متن کامل

The polycystin-1 C-terminal fragment triggers branching morphogenesis and migration of tubular kidney epithelial cells.

Mutations of either PKD1 or PKD2 cause autosomal dominant polycystic kidney disease, a syndrome characterized by extensive formation of renal cysts and progressive renal failure. Homozygous deletion of Pkd1 or Pkd2, the genes encoding polycystin-1 and polycystin-2, disrupt normal renal tubular differentiation in mice but do not affect the early steps of renal development. Here, we show that exp...

متن کامل

Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1.

BACKGROUND When challenged with extracellular fluid shear stress, vascular endothelial cells are known to release nitric oxide, an important vasodilator. Here, we show that the ability of cultured endothelial cells to sense a low range of fluid shear depends on apical membrane organelles, called cilia, and that cilia are compartments required for proper localization and function of the mechanos...

متن کامل

When a module is not a domain: the case of the REJ module and the redefinition of the architecture of polycystin-1.

The extracellular region of a group of cell-surface receptors known as the polycystic kidney disease 1 family, containing, among others, polycystin-1, has been controversially described as containing four FNIII (fibronectin type III) domains or one REJ (receptor of egg jelly protein) module in the same portion of polypeptide. Stimulated by recent atomic force microscopy work, we re-examined the...

متن کامل

Ciliary function of polycystins: a new model for cystogenesis.

Autosomal dominant polycystic kidney disease results from loss-of-function mutations in either polycystin-1 (Pc-1) or polycystin-2 (Pc-2). These transmembrane proteins directly interact through cytosolic domains of their C-termini. Pc-1 has been implicated in cell– extracellular matrix (ECM) interactions at focal adhesion contacts, but also in cell–cell interactions at tight junctions, adherens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 49  شماره 

صفحات  -

تاریخ انتشار 2005